Explicit formulas for the minimal variance hedging strategy in a martingale case

نویسندگان

  • Flavio Angelini
  • Stefano Herzel
چکیده

We explicitly compute closed formulas for the minimal variance hedging strategy in discrete time of a European option and for the variance of the corresponding hedging error under the hypothesis that the underlying asset is a martingale following a Geometric Brownian motion. The formulas are easy to implement, hence the optimal hedge ratio can be employed as a valid substitute of the standard BlackScholes delta and the knowledge of the variance of the total error can be a useful tool for measuring and managing the hedging risk. Corresponding author: F. Angelini, Dipartimento di Economia, Finanza e Statistica, University of Perugia, Via A. Pascoli, 1, 06123 Perugia, Italy, Phone: +39-75-5855258, Fax: +39-75-5855456, email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean-Variance Hedging under Additional Market Information

In this paper we analyse the mean-variance hedging approach in an incomplete market under the assumption of additional market information, which is represented by a given, finite set of observed prices of non-attainable contingent claims. Due to no-arbitrage arguments, our set of investment opportunities increases and the set of possible equivalent martingale measures shrinks. Therefore, we obt...

متن کامل

Risk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process

This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain   risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...

متن کامل

Quadratic Hedging of Basis Risk

This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer–Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since...

متن کامل

Minimizing Shortfall Risk Using Duality Approach - An Application to Partial Hedging in Incomplete Markets

Option pricing and hedging in a complete market are well-studied with nice results using martingale theories. However, they remain as open questions in incomplete markets. In particular, when the underlying processes involve jumps, there could be infinitely many martingale measures which give an interval of no-arbitrage prices instead of a unique one. Consequently, there is no martingale repres...

متن کامل

A Guided Tour through Quadratic Hedging Approaches

This paper gives an overview of results and developments in the area of pricing and hedging contingent claims in an incomplete market by means of a quadratic criterion. We first present the approach of risk-minimization in the case where the underlying discounted price process X is a local martingale. We then discuss the extension to local risk-minimization when X is a semimartingale and explai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007